Finite-volume models with implicit subgrid-scale parameterization for the differentially heated rotating annulus

METEOROLOGISCHE ZEITSCHRIFT(2015)

引用 2|浏览10
暂无评分
摘要
The differentially heated rotating annulus is a classical experiment for the investigation of baroclinic flows and can be regarded as a strongly simplified laboratory model of the atmosphere in mid-latitudes. Data of this experiment, measured at the BTU Cottbus-Senftenberg, are used to validate two numerical finite-volume models (INCA and cylFloit) which differ basically in their grid structure. Both models employ an implicit parameterization of the subgrid-scale turbulence by the Adaptive Local Deconvolution Method (ALDM). One part of the laboratory procedure, which is commonly neglected in simulations, is the annulus spin-up. During this phase the annulus is accelerated from a state of rest to a desired angular velocity. We use a simple modelling approach of the spin-up to investigate whether it increases the agreement between experiment and simulation. The model validation compares the azimuthal mode numbers of the baroclinic waves and does a principal component analysis of time series of the temperature field. The Eady model of baroclinic instability provides a guideline for the qualitative understanding of the observations.
更多
查看译文
关键词
differentially heated rotating annulus,finite-volume models,implicit subgrid-scale parameterization,baroclinic waves,principal component analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要