The impact of aged wildfire smoke on atmospheric composition and ozone in the Colorado Front Range in summer 2015

Atmospheric Chemistry and Physics(2017)

引用 2|浏览14
暂无评分
摘要
Abstract. The relative importance of wildfire smoke for air quality over the western U.S. is expected to increase as the climate warms and anthropogenic emissions decline. We report on in situ measurements of ozone (O3), a suite of volatile organic compounds (VOCs), and reactive oxidized nitrogen species collected during summer 2015 at the Boulder Atmospheric Observatory (BAO) in Erie, CO. Aged wildfire smoke impacted BAO during two distinct time periods during summer 2015: 6–10 July and 16–30 August. The smoke was transported from the Pacific Northwest and Canada across much of the continental U.S. Carbon monoxide and particulate matter increased during the smoke-impacted periods, along with peroxyacyl nitrates and several VOCs that have atmospheric lifetimes longer than the transport timescale of the smoke. During the August smoke-impacted period, nitrogen dioxide was also elevated during the morning and evening compared to the smoke-free periods. There were six days during our study period where the maximum 8-hour average O3 at BAO was greater than 65 ppbv, and two of these days were smoke-impacted. We examined the relationship between O3 and temperature at BAO and found that for a given temperature, O3 mixing ratios were greater (~ 10 ppbv) during the smoke-impacted periods. Enhancements in O3 during the August smoke-impacted period were also observed at two long-term monitoring sites in Colorado: Rocky Mountain National Park and the Arapahoe National Wildlife Refuge near Walden, CO. Our data provide a new case study of how aged wildfire smoke can influence atmospheric composition at an urban site, and how smoke can contribute to increased O3 abundances across an urban-rural gradient.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要