Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse

arXiv: Numerical Analysis(2016)

引用 27|浏览10
暂无评分
摘要
We develop the first stochastic incremental method for calculating the Moore-Penrose pseudoinverse of a real matrix. By leveraging three alternative characterizations of pseudoinverse matrices, we design three methods for calculating the pseudoinverse: two general purpose methods and one specialized to symmetric matrices. The two general purpose methods are proven to converge linearly to the pseudoinverse of any given matrix. For calculating the pseudoinverse of full rank matrices we present two additional specialized methods which enjoy a faster convergence rate than the general purpose methods. We also indicate how to develop randomized methods for calculating approximate range space projections, a much needed tool in inexact Newton type methods or quadratic solvers when linear constraints are present. Finally, we present numerical experiments of our general purpose methods for calculating pseudoinverses and show that our methods greatly outperform the Newton-Schulz method on large dimensional matrices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要