Phase Stability and Mechanical Properties of Ti-Cr-Sn-Zr Alloys Containing a Large Amount of Zr

Yonosuke Murayama, Erdnechuluun Enkhjavkhlan,Akihiko Chiba

Materials Science Forum(2016)

引用 1|浏览2
暂无评分
摘要
The Young’s modulus of Ti-Cr-Sn-Zr alloy varies with the composition of Cr, Sn and Zr, in which the elements act as β stabilizers. Some Ti-Cr-Sn-Zr alloys show very low Young’s modulus under 50GPa. The amount of Zr in alloys with very low Youngu0027s modulus increases with the decrease of Cr. We investigated the Young’s modulus and deformation behavior of Ti-xCr-Sn-Zr (x=0~1mass%) alloys containing a large amount of Zr. The quenched microstructure of Ti-Cr-Sn-Zr alloys changes from martensitic structure to β single-phase structure if the amounts of β stabilized elements are increased. The Ti-Cr-Sn-Zr alloys with compositions close to the transitional composition of microstructure from martensite to β phase show minimum Young’s modulus. The clear microstructural transition disappears and the minimum Young’s modulus increases if the amount of Cr becomes too small. In Ti-Cr-Sn-Zr alloys containing a large amount of Zr, Young’s modulus depends on β phase that is intermingled with martensite.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要