Contribution of de novo non-coding mutations to autism and identification of risk genes from whole-genome sequencing of affected families

bioRxiv(2018)

引用 1|浏览42
暂无评分
摘要
Analyzing de novo mutations (DNMs) in protein-coding genes from whole-exome sequencing (WES) data has emerged as a powerful tool for mapping risk genes of autism spectrum disorder (ASD). The impact of non-coding mutations in ASD, however, has been largely unknown. This represents a large gap in our understanding of the genetics of ASD, as the majority of GWAS hits for a range of disorders fall into non-coding regions. To address this question, we performed a meta-analysis of DNMs using whole-genome sequencing (WGS) data from more than 300 individuals with ASD. We found that DNMs are enriched within brain transcriptional regulatory elements near genes involved in neuropsychiatric disorders. In these genes and in evolutionarily constrained genes, we also found an excess of DNMs that are predicted to affect pre-mRNA splicing. Collectively, we estimate that non-coding mutations explain at least one third of the ASD genetic risk attributable to DNMs. By combining information of non-coding DNMs with published WES data, we identified three new ASD risk genes at a false discovery rate (FDR)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要