Mid-Neoproterozoic (ca. 830-800 Ma) metamorphic P-T paths link Tarim to the circum-Rodinia subduction-accretion system

TECTONICS(2016)

引用 62|浏览40
暂无评分
摘要
Long-lived exterior accretionary orogeny shapes tectonothermal evolution of the peripheral building blocks of supercontinents and leads to considerable crustal growth. However, such accretionary orogeny has only been locally recognized for the Rodinia supercontinent. Here a suite of newly discovered mid-Neoproterozoic high-grade metamorphic rocks in the northern Tarim Craton, NW China, are used to test the exterior accretion hypothesis for Rodinia. These rocks occur as dark-colored mafic and calc-silicate boudins in impure marbles and mica schists. Geochemical data suggest a protolith of arc-related basalts metasomatized by Ca-rich fluids. Mineral assemblages, phase diagram modeling, and mineral compositions for a garnet pyroxenite and a garnet clinopyroxene gneiss reveal upper amphibolite to high-pressure granulite facies peak metamorphism (660-700 degrees C, 11-12 kbar) following a counterclockwise P-T path, which is characterized by prograde burial and heating, followed by near-isothermal burial and retrograde exhumation and cooling. This P-T path is interpreted to have recorded crustal thickening of an earlier magmatic arc transformed to a fore arc by subduction erosion and subsequent burial along bent isotherms near the subduction channel. All studied samples record ca. 830-800 Ma metamorphic zircon U-Pb ages, which probably date the early exhumation and cooling according to Ti-in-zircon temperatures, zircon rare earth element patterns, and Hf isotopes. This is the first mid-Neoproterozoic P-T-t path in Tarim, and it provides metamorphic evidence for a mid-Neoproterozoic advancing-type accretionary orogeny, which is coeval with the initial breakup events of Rodinia and thus links Tarim to the circum-Rodinia accretion system, supporting the peripheral subduction model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要