Tomographic Rayleigh wave group velocities in the Central Valley, California, centered on the Sacramento/San Joaquin Delta

Jon B. Fletcher, Jemile Erdem, Kevin J. Seats,Jesse F. Lawrence

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH(2016)

引用 6|浏览12
暂无评分
摘要
If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta, then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of freshwater for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental mode, Rayleigh wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations was stacked over 8months to more than a year. Dispersion curves were determined from 4 to about 18 s. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6km in either dimension. Checkerboard tests of resolution, which are dependent on station density, suggest that the resolving ability of the array is reasonably goodwithin the middle of the array with resolution between 0.2 and 0.4 degrees. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large crosscutting features like the Stockton arch. At shorter periods around 5.5s, the model's western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries of the low-velocity zone and gravity anomaly are better aligned at longer periods (around 10.5s) suggesting that the eastern edge of the gravity low is associated with deeper structure. There is a strong correspondence between a low in gravity near the Kirby Hills fault and low velocities from the ambient noise tomography. At longer periods, higher velocities creep in from the east and narrow the overall dimension defined by the lower velocities. Overall, there is a strong correspondence between the shape and location of low velocities in the Rayleigh wave velocity images, and geological and geophysical features.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要