Quantifying fault reactivation risk in the western Gippsland Basin using geomechanical modelling

The APPEA Journal(2013)

引用 2|浏览3
暂无评分
摘要
The Rosedale Fault System (RFS) bounds the northern margin of the Gippsland Basin on the Southern Australian Margin. It comprises an anastomosing system of large, Cretaceous-age normal faults that have been variably reactivated during mid Eocene-Recent inversion. A number of large oil and gas fields are located in anticlinal traps associated with the RFS, and in the future these fields may be considered as potential storage sites for captured CO2. Given the evidence for geologically recent fault reactivation along the RFS, it is thus necessary to evaluate the potential impacts of CO2 injection on fault stability. The analysis and interpretation of 3D seismic data allowed the authors to create a detailed structural model of the western section of the RFS. Petroleum geomechanical data indicates that the in-situ stress in this region is characterised by hybrid strike-slip to reverse faulting conditions where SHmax (40.5 MPa/km) > SV (21 MPa/km) ~ Shmin (20 MPa/km). The authors performed geomechanical modelling to assess the likelihood of fault reactivation assuming that both strike-slip and reverse-stress faulting regimes exist in the study area. The authors’ results indicate that the northwest to southeast and east-northeast to west-southwest trending segments of the RFS are presently at moderate and high risks of reactivation. The authors’ results highlight the importance of fault surface geometry in influencing fault reactivation potential, and show that detailed structural models of potential storage sites must be developed to aid risk assessments before injection of CO2.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要