Increased Consumption And Vasodilatory Effect Of Nitrite During Exercise

AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY(2016)

引用 5|浏览17
暂无评分
摘要
This study investigated the effects of aerobic-to-anaerobic exercise on nitrite stores in the human circulation and evaluated the effects of systemic nitrite infusion on aerobic and anaerobic exercise capacity and hemodynamics. Six healthy volunteers were randomized to receive sodium nitrite or saline for 70 min in two separate occasions in an exercise study. Subjects cycled on an upright electronically braked cycle ergometer 30 min into the infusion according to a ramp protocol designed to attain exhaustion in 10 min. They were allowed to recover for 30 min thereafter. The changes of whole blood nitrite concentrations over the 70-min study period were analyzed by pharmacokinetic modeling. Longitudinal measurements of hemodynamic and clinical variables were analyzed by fitting nonparametric regression spline models. During exercise, nitrite consumption/elimination rate was increased by similar to 137%. Cardiac output (CO), mean arterial pressure (MAP), and pulmonary artery pressure (PAP) were increased, but smaller elevation of MAP and larger increases of CO and PAP were found during nitrite infusion compared with placebo control. The higher CO and lower MAP during nitrite infusion were likely attributed to vasodilation and a trend toward decrease in systemic vascular resistance. In contrast, there were no significant changes in mean pulmonary artery pressures and pulmonary vascular resistance. These findings, together with the increased consumption of nitrite and production of iron-nitrosyl-hemoglobin during exercise, support the notion of nitrite conversion to release NO resulting in systemic vasodilatation. However, at the dosing used in this protocol achieving micromolar plasma concentrations of nitrite, exercise capacity was not enhanced, as opposed to other reports using lower dosing.
更多
查看译文
关键词
nitrite store,incremental exercise test,pharmacokinetics,hemodynamics,vasodilation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要