Efficacy of Sonothrombolysis Using Microbubbles Produced by a Catheter-Based Microfluidic Device in a Rat Model of Ischemic Stroke

Annals of Biomedical Engineering(2019)

引用 27|浏览15
暂无评分
摘要
Limitations of existing thrombolytic therapies for acute ischemic stroke have motivated the development of catheter-based approaches that utilize no or low doses of thrombolytic drugs combined with a mechanical action to either dissolve or extract the thrombus. Sonothrombolysis accelerates thrombus dissolution via the application of ultrasound combined with microbubble contrast agents and low doses of thrombolytics to mechanically disrupt the fibrin mesh. In this work, we studied the efficacy of catheter-directed sonothrombolysis in a rat model of ischemic stroke. Microbubbles of 10–20 µ m diameter with a nitrogen gas core and a non-crosslinked albumin shell were produced by a flow-focusing microfluidic device in real time. The microbubbles were dispensed from a catheter located in the internal carotid artery for direct delivery to the thrombus-occluded middle cerebral artery, while ultrasound was administered through the skull and recombinant tissue plasminogen activator (rtPA) was infused via a tail vein catheter. The results of this study demonstrate that flow focusing microfluidic devices can be miniaturized to dimensions compatible with human catheterization and that large-diameter microbubbles comprised of high solubility gases can be safely administered intraarterially to deliver a sonothrombolytic therapy. Further, sonothrombolysis using intraarterial delivery of large microbubbles reduced cerebral infarct volumes by approximately 50% vs. no therapy, significantly improved functional neurological outcomes at 24 h, and permitted rtPA dose reduction of 3.3 (95% CI 1.8–3.8) fold when compared to therapy with intravenous rtPA alone.
更多
查看译文
关键词
Ischemic stroke,Thrombolysis,Ultrasound,Microbubbles,Microfluidics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要