Etiologic Framework for the Study of Neurodegenerative Disorders as Well as Vascular and Metabolic Comorbidities on the Grounds of Shared Epidemiologic and Biologic Features.

FRONTIERS IN AGING NEUROSCIENCE(2016)

引用 6|浏览17
暂无评分
摘要
Background: During the last two decades, protein aggregation at all organismal levels, from viruses to humans, has emerged from a neglected area of protein science to become a central issue in biology and biomedicine. This article constitutes a risk-based review aimed at supporting an etiologic scenario of selected, sporadic, protein-associated, i.e., conformational, neurodegenerative disorders (NDDs), and their vascular- and metabolic-associated ailments. Methods: A rationale is adopted, to incorporate selected clinical data and results from animal-model research, complementing epidemiologic evidences reported in two prior articles. Findings: Theory is formulated assuming an underlying conformational transmission mechanism, mediated either by horizontal transfer of mammalian genes coding for specific aggregation prone proteins, or by xeno-templating between bacterial and host proteins. We build a few population-based and experimentally-testable hypotheses focusing on: (1) non-disposable surgical instruments for sporadic Creutzfeldt-Jakob disease (sCJD) and other rapid progressive neurodegenerative dementia (sRPNDd), multiple system atrophy (MSA), and motor neuron disease (MND); and (2) specific bacterial infections such as B. pertussis and E. coil for all forms, but particularly for late life sporadic conformational, NDDs, type 2 diabetes mellitus (T2DM), and atherosclerosis where natural protein fibrils present in such organisms as a result of adaptation to the human host induce prion-like mechanisms. Conclusion: Implications for cohort alignment and experimental animal research are discussed and research lines proposed.
更多
查看译文
关键词
epidemiological patterns,etiology of conformational protein deposits,templating underlying risk/progression,disease induction vs. transmission in amyloid,multidisciplinary research overlaps
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要