Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells.

Journal of Bioscience and Bioengineering(2016)

引用 15|浏览12
暂无评分
摘要
Plant and yeast derived hydrolysates are economical and efficient alternative medium supplements to improve mammalian cell culture performance. We supplemented two commercial Chinese hamster ovary (CHO) culture media with hydrolysates from four different sources, yeast, soybean, Ex-Cell CD (a chemically defined hydrolysate replacement) and wheat to improve the productivity of two cell lines expressing different monoclonal antibodies (mAbs). Yeast, soybean and Ex-Cell CD improved the final mAb titer by increasing the specific productivity (qP) and/or extension of the culture period. Wheat hydrolysates increased peak viable cell density but did not improve productivity. IgG recovery from protein A purification was not compromised for all cultures by adding yeast, soybean and Ex-Cell CD hydrolysates except for one sample from soybean supplemented culture. Adding these three hydrolysates neither increased the amount of host cell protein, DNA or aggregate impurity amounts nor affect their clearance after purification. Profiling of the glycan types revealed that yeast and soybean hydrolysates could affect the distribution of galactosylated glycans. Ex-Cell CD performed the best at maintaining glycan profile compared to the non-supplemented cultures. Overall, yeast performed the best at improving CHO culture growth and productivity without being detrimental to downstream protein A processes but could affect mAb product glycan distribution while Ex-Cell CD yielded lower titers but has less effect on glycosylation. The hydrolysate to use would thus depend on the requirements of each process and our results would provide a good reference for improving culture performance with hydrolysates or related studies.
更多
查看译文
关键词
Chinese hamster ovary,Monoclonal antibody,Hydrolysates,Productivity,Purification,Glycosylation,Aggregation,Host cell protein
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要