Water-Mediated Assembly of Gold Nanoparticles into Aligned One-Dimensional Superstructures.

LANGMUIR(2015)

引用 6|浏览8
暂无评分
摘要
This Article shows that water in ethanol colloids of gold nanoparticles enhances the formation of linear clusters and, more important for applications in electronics, determines their assembly on surfaces. We show by dynamic light scattering that ethanol colloids contain mainly monomers and dimers and that wormlike superstructures are mostly absent, despite UV-vis evidence of aggregation. Water added to the colloid as a cosolvent was found to enhance the number of clusters as well as their average size, confirming its role in linear self-assembly, on the scale of a few particles. Water adsorbed from the atmosphere during coating was also found to be a powerful lever to tune self-assembly on surfaces. By varying the relative humidity, a sharp transition from branched to linear superstructures was observed, showing the importance of water as a cosolvent in the formation of cluster superstructures. We show that one-dimensional superstructures may form due to long-range mobility of precursor clusters on wet surfaces, allowing their rearrangement. The understanding of the phenomenon allows us to statistically align both clusters and resulting superstructures on patterned substrates, opening the way to rapid screening in molecular electronics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要