Face Frontalization Using an Appearance-Flow-based Convolutional Neural Network.

IEEE transactions on image processing : a publication of the IEEE Signal Processing Society(2019)

引用 46|浏览67
暂无评分
摘要
Facial pose variation is one of the major factors making face recognition (FR) a challenging task. One popular solution is to convert non-frontal faces to frontal ones on which face recognition is performed. Rotating faces causes facial pixel value changes. Therefore, existing CNN-based methods learn to synthesize frontal faces in color space. However, this learning problem in a color space is highly non-linear, causing the synthetic frontal faces to lose fine facial textures. In this work, we take the view that the nonfrontal-frontal pixel changes are essentially caused by geometric transformations (rotation, translation, etc) in space. Therefore, we aim to learn the nonfrontal-frontal facial conversion in spatial domain rather than the color domain to ease the learning task. To this end, we propose an Appearance- Flow-based Face Frontalization Convolutional Neural Network (A3F-CNN). Specifically, A3F-CNN learns to establish the dense correspondence between the non-frontal and frontal faces. Once the correspondence is built, frontal faces are synthesized by explicitly 'moving' pixels from the non-frontal one. In this way, the synthetic frontal faces can preserve fine facial textures. To improve the convergence of training, an appearance-flow-guided learning strategy is proposed. In addition, GAN loss is applied to achieve a more photorealistic face and a face mirroring method is introduced to handle the self-occlusion problem. Extensive experiments are conducted on face synthesis and pose invariant face recognition. Results show that our method can synthesize more photorealistic faces than existing methods in both controlled and uncontrolled lighting environments. Moreover, we achieve very competitive face recognition performance on the Multi-PIE, LFW and IJB-A databases.
更多
查看译文
关键词
Face,Face recognition,Gallium nitride,Three-dimensional displays,Generative adversarial networks,Image color analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要