Hemorrhage Attenuates Neutrophil Recruitment in Response to Secondary Respiratory Infection by Pseudomonas Aeruginosa.

SHOCK(2019)

引用 5|浏览11
暂无评分
摘要
Neutrophil recruitment into the lung airspaces plays an important role in the containment and clearance of bacteria. Hemorrhagic shock, a complication of traumatic injury, induces immune dysfunction that compromises host defense and frequently leads to secondary infection. The objective of the current study was to determine whether prior hemorrhage impacts neutrophil recruitment in response to secondary Pseudomonas aeruginosa. Experiments were performed using a mouse model (C57BL/6) of respiratory infection by P. aeruginosa (strain PA103, 3 x 10(5) colony-forming units [CFUs]) that is delivered by intratracheal inhalation 24 h after hypovolemic hemorrhagic shock (fixed mean arterial blood pressure at 35 mmHg for 90 min, Ringer's lactate infused as fluid resuscitation). By postmortem flow cytometry analyses of bronchoalveolar lavage fluid, we observe that prior hemorrhage attenuates the entry of neutrophils into the lung airspaces in response to P. aeruginosa. The reduction in neutrophil recruitment occurs in an amplified inflammatory environment, with elevated lung tissue levels of interleukin 6 and C-X-C motif ligand 1 in mice receiving hemorrhage prior to infection. As compared to either insult alone, outcome to sequential hemorrhage and respiratory infection includes enhanced mortality. The effect of prior hemorrhage on clearance of P. aeruginosa, as determined by quantifying bacterial CFUs in lung tissue, was not statistically significant at 24 h postinfection, but our data suggest that further inquiry may be needed to fully understand the potential impact of hemorrhagic shock on this process. These results suggest that changes in neutrophil recruitment may contribute to the immune dysfunction following hemorrhagic shock that renders the host susceptible to severe respiratory infection.
更多
查看译文
关键词
Acute lung injury,bacterial infection,granulocytes,inflammation,priming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要