Target-Enriched Endosymbiont Sequencing (TEEseq): A New High-Throughput Sequencing Approach Applied to the Comprehensive Characterization of Endosymbionts.

Methods in molecular biology (Clifton, N.J.)(2019)

引用 1|浏览2
暂无评分
摘要
Intracellular bacteria are ubiquitous in the insect world, with perhaps the best-studied example being the alphaproteobacterium, Wolbachia. Like most endosymbionts, Wolbachia cannot be cultivated outside of its host cells, hindering traditional microbial characterization techniques. Furthermore, multiple Wolbachia strains can be present within a single host, and certain strains can be present in densities below the detection limit of current methods. To date, Wolbachia has most commonly been studied using polymerase chain reaction (PCR) amplification and Sanger DNA sequencing by targeting specific genes in the bacterium's genome. PCR amplification and Sanger sequencing of multiple Wolbachia strains requires analysis of individually cloned sequences, which is resource and labor intensive. To help mitigate these difficulties, we present a modified double digest restriction site associated DNA sequencing (ddRADseq) approach to target and sequence in parallel multiple genes by adding restriction enzyme recognition sites to gene-specific PCR primers. Adopting this strategy allows us to uniquely tag and sequence amplicons from multiple hosts simultaneously on an Illumina MiSeq platform. Our approach represents an efficient and cost-effective method to characterize multiple target genes in population surveys.
更多
查看译文
关键词
Endosymbiont,Illumina sequencing,Metabarcoding,Microbial community,PCR enrichment,Wolbachia,ddRAD
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要