Structural basis for (p)ppGpp-mediated inhibition of the GTPase RbgA

Journal of Biological Chemistry(2018)

引用 33|浏览15
暂无评分
摘要
Efficient adaptation to environmental changes is pivotal for all bacterial cells. Almost all bacterial species depend on the conserved stringent response system to prompt timely transcriptional and metabolic responses according to stress conditions and nutrient depletion. The stringent response relies on the stress-dependent synthesis of the second messenger nucleotides and alarmones (p)ppGpp, which pleiotropically target and reprogram processes that consume cellular resources, such as ribosome biogenesis. Here we show that (p)ppGpp acts on the ribosome biogenesis GTPase A (RbgA) of Gram-positive bacteria. Using X-ray crystallography, hydrogen-deuterium exchange MS (HDX-MS) and kinetic analysis, we demonstrate that the alarmones (p)ppGpp bind to RbgA in a manner similar to that of binding by GDP and GTP and thereby act as competitive inhibitors. Our structural analysis of Staphylococcus aureus RbgA bound to ppGpp and pppGpp at 1.8 and 1.65 resolution, respectively, suggested that the alarmones (p)ppGpp prevent the active GTPase conformation of RbgA by sterically blocking the association of its G2 motif via their 3-pyrophosphate moieties. Taken together, our structural and biochemical characterization of RbgA in the context of the alarmone-mediated stringent response reveals how (p)ppGpp affects the function of RbgA and reprograms this GTPase to arrest the ribosomal large subunit.
更多
查看译文
关键词
GTPase, X-ray crystallography, ribosome assembly, inhibition mechanism, enzyme kinetics, (p)ppGpp, alarmone, cell stress, RbgA, stringent response
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要