A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen.

Journal of the mechanical behavior of biomedical materials(2018)

引用 17|浏览4
暂无评分
摘要
The study proposes a novel theoretical-experimental approach for structure-based constitutive modeling of the passive mechanical properties of arterial tissue. The major novelty is accounting for the existence of individual natural configurations of elastin and collagen and their mechanical interaction in terms of the constituents' individual prestretches in the tissue natural state. The structure-based modeling of collagen allows accounting for effects of change in constituents' prestretch in terms of the change in feasible microstructural parameters, such as range of collagen recruitment stretch, mode of collagen mass fraction intensity function, and fiber directions. The results from an illustrative example for a porcine renal artery show that the model is robust and can adequately describe pressure-radius response and the stress-stretch relationship. The predictive capability of the model is tested in simulations of an isolated change in collagen prestretch and of elastin degradation in an artery kept at constant length. We expect this model to advance understanding about arterial rheology and serve as a useful tool for interpreting experimental data and solving boundary value problems relevant to vascular physiology at normal and pathological states.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要