Adaptively accelerating reactive molecular dynamics using boxed molecular dynamics in energy space.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2018)

引用 19|浏览35
暂无评分
摘要
The problem of observing rare events is pervasive among the molecular dynamics community and an array of different types of methods are commonly used to accelerate these long time scale processes. Typically, rare event acceleration methods require an a priori specification of the event to be accelerated. In recent work, we have demonstrated the application of boxed molecular dynamics to energy space, as a way to accelerate rare events in the stochastic chemical master equation. Here we build upon this work and apply the boxed molecular dynamics algorithm to the energy space of a molecule in classical trajectory simulations. Through this new BXD in energy (BXDE) approach we demonstrate that generic rare events (in this case chemical reactions) may be accelerated by multiple orders of magnitude compared to unbiased simulations. Furthermore, we show that the ratios of products formed from the BXDE simulations are similar to those formed in unbiased simulations at the same temperature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要