TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation.

N Pairet, S Mang,G Fois,M Keck, M Kühnbach, J Gindele,M Frick,P Dietl, D J Lamb

PloS one(2018)

引用 45|浏览12
暂无评分
摘要
Mechanical ventilation is an important tool for supporting critically ill patients but may also exert pathological forces on lung cells leading to Ventilator-Induced Lung Injury (VILI). We hypothesised that inhibition of the force-sensitive transient receptor potential vanilloid (TRPV4) ion channel may attenuate the negative effects of mechanical ventilation. Mechanical stretch increased intracellular Ca2+ influx and induced release of pro-inflammatory cytokines in lung epithelial cells that was partially blocked by about 30% with the selective TRPV4 inhibitor GSK2193874, but nearly completely blocked with the pan-calcium channel blocker ruthenium red, suggesting the involvement of more than one calcium channel in the response to mechanical stress. Mechanical stretch also induced the release of pro-inflammatory cytokines from M1 macrophages, but in contrast this was entirely dependent upon TRPV4. In a murine ventilation model, TRPV4 inhibition attenuated both pulmonary barrier permeability increase and pro-inflammatory cytokines release due to high tidal volume ventilation. Taken together, these data suggest TRPV4 inhibitors may have utility as a prophylactic pharmacological treatment to improve the negative pathological stretch-response of lung cells during ventilation and potentially support patients receiving mechanical ventilation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要