Discovery and Optimization of Phosphopantetheine Adenylyltransferase Inhibitors with Gram-Negative Antibacterial Activity.

JOURNAL OF MEDICINAL CHEMISTRY(2018)

引用 24|浏览26
暂无评分
摘要
In the preceding manuscript [Moreau et al. 2018, 10.1021/acs.jmedchem.7b01691] we described a successful fragment-based lead discovery (FBLD) strategy for discovery of bacterial phosphopantetheine adenylyltransferase inhibitors (PPAT, CoaD). Following several rounds of optimization two promising lead compounds were identified: triazolopyrimidinone 3 and 4-azabenzimidazole 4. Here we disclose our efforts to further optimize these two leads for on-target potency and Gram-negative cellular activity. Enabled by a robust X-ray crystallography system, our structure-based inhibitor design approach delivered compounds with biochemical potencies 4-5 orders of magnitude greater than their respective fragment starting points. Additional optimization was guided by observations on bacterial permeability and physicochemical properties, which ultimately led to the identification of PPAT inhibitors with cellular activity against wild-type E. coli.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要