Expression of striated activator of rho-signaling in human skeletal muscle following acute exercise and long-term training.

Physiological reports(2018)

引用 3|浏览9
暂无评分
摘要
The striated activator of rho-signaling (STARS) protein acts as a link between external stimuli and exercise adaptation such as muscle hypertrophy. However, the acute and long-term adaptational response of STARS is still unclear. This study aimed at investigating the acute and long-term endurance training response on the mRNA and protein expression of STARS and its related upstream and downstream factors in human skeletal muscle. mRNA and protein levels of STARS and related factors were assessed in skeletal muscle of healthy young men and women following an acute bout of endurance exercise (n = 15) or 12 weeks of one-legged training (n = 23). Muscle biopsies were obtained before (acute and long-term), at 30 min, 2, and 6 h following acute exercise, and at 24 h following both acute exercise and long-term training. Following acute exercise, STARS mRNA was significantly elevated 3.9-fold at 30 min returning back to baseline 24 h after exercise. STARS protein levels were numerically but nonsignificantly increased 7.2-fold at 24 h. No changes in STARS or ERRα mRNA or STARS protein expression were seen following long-term training. PGC-1α mRNA increased 1.7-fold following long-term training. MRTF-A mRNA was increased both following acute exercise and long-term training, in contrast to SRF mRNA and protein which did not change. STARS mRNA is acutely upregulated with exercise, but there is no cumulative effect to long-term training as seen in PGC-1α mRNA expression. Exercise intensity might play a role in manifestation of protein expression, suggesting a more complex regulation of STARS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要