Myxovirus resistance protein A inhibits hepatitis C virus replication through JAK-STAT pathway activation

Archives of Virology(2018)

引用 6|浏览3
暂无评分
摘要
The interferon-inducible dynamin-like GTPase myxovirus resistance protein A (MxA) exhibits activity against multiple viruses. However, its role in the life cycle of hepatitis C virus (HCV) is unclear, and the mechanisms underlying the anti-HCV activity of MxA require further investigation. In this study, we demonstrated that exogenous MxA expression in the Huh7 and Huh7.5.1 hepatoma cell lines significantly decreased the levels of HCV RNA and core proteins, whereas MxA knockdown exerted the opposite effect. MxA-mediated inhibition of HCV replication was found to involve the JAK-STAT pathway: STAT1 phosphorylation and the expression of IFN-stimulated genes (ISGs) such as guanylate-binding protein 1 and 2′-5′-oligoadenylate synthetase 1 were augmented by MxA overexpression and reduced by endogenous MxA silencing. Treatment with the JAK inhibitor ruxolitinib abrogated the MxA-mediated suppression of HCV replication and activation of the JAK-STAT pathway. Additionally, transfection with an MxA mutant with disrupted GTP-binding consensus motifs abrogated activation of the JAK-STAT pathway and resistance to HCV replication. This study shows that MxA inhibits HCV replication by activating the JAK-STAT signaling pathway through a mechanism involving its GTPase function.
更多
查看译文
关键词
myxovirus replication,protein,jak-stat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要