Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing.

Materials Science and Engineering: C(2017)

引用 228|浏览10
暂无评分
摘要
Fibrous mats built from biopolymer have been extensively explored for tissue engineering due mainly to their mimic structure to the extracellular matrix. The incorporation of drug in such scaffolds represents a growing interest for control drug delivery system in order to promote the tissue repair. In the present work, we present an experimental investigation of morphological, thermal, mechanical, drug release, antibacterial and cytotoxicity properties of electrospun PVA/Chitosan and PVA/Chitosan/Tetracycline hydrochloride (TCH) mats for wound dressing. Fibrous mats with cross-linked three-dimensional nanofibers were formed from the polymer blends. A uniform incorporation of drug was achieved along the nanofibers with not significant change on the morphological and thermal properties of the mats. Furthermore, the TCH release profile with a burst delivery during the first 2h allows an effective antibacterial activity on the Gram-negative Escherichia coli as well as on the Gram-positive Staphylococci epidermidis and Staphylococcus aureus. In vitro indirect MTT assay also showed that the developed drug-loaded nanofibrous scaffolds have good cytocompatibility, which was confirmed by scratch assay, indicating that the investigated scaffold may be used as antibacterial wound dressing for healing promotion.
更多
查看译文
关键词
Nanofibers,Biopolymer,Drug release,Antibiotic,Scaffold,Electrospinning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要