Role of the nitrergic pathway in motor effects of oxytocin in rat proximal colon.

R Wang,L Y Guo, M Y Suo,Y Sun,J Y Wu, X Y Zhang,C Y Liu

NEUROGASTROENTEROLOGY AND MOTILITY(2016)

引用 9|浏览37
暂无评分
摘要
BackgroundOxytocin (OT) reduces rat duodenal tone and mouse intestinal transit; however, the underlying mechanisms are not totally understood. Consequently, this study was designed to investigate the influence of OT on spontaneous mechanical activity and neurally evoked responses, to characterize the mechanisms of the action, and to determine the distribution of the OT receptor (OTR) in rat proximal colonic muscle strips. MethodsThe organ bath technique with electrical field stimulation, western blotting, and immunofluorescence were used. Key ResultsIn rat proximal colon, exogenous OT induced a concentration-dependent reduction of the spontaneous mechanical activity without affecting the resting basal tone, which was abolished by atosiban, an OTR antagonist, by tetrodotoxin (TTX), a neural blocker or by N-propyl-l-arginine hydrochloride, an inhibitor of neuronal nitric oxide synthase (nNOS). The inhibitory effects of OT were not affected by atropine or the vasoactive intestinal peptide (VIP) receptor antagonist [Lys1, Pro2,5, Arg3,4, Tyr6]-VIP (VIPHyb). Proximal colon responses to electrical field stimulation were characterized by nonadrenergic, noncholinergic (NANC) relaxation, which was followed by an off-contraction. Oxytocin enhanced only NANC relaxation. Oxytocin stimulated spontaneous NO release from the longitudinal muscle myenteric plexus preparation of rat proximal colon. Western blot and immunohistochemistry experiments showing the presence of the OTR in proximal colon, and its co-localization with nNOS established that myenteric nitrergic neurons express OTR. Conclusions & InferencesThe activation of OTR located on nitrergic neurons may negatively modulate colonic spontaneous contraction and enhance electrically evoked NANC relaxation through excitation of NO release.
更多
查看译文
关键词
colonic motility,enteric nervous system,gastrointestinal hormones,nitric oxide,oxytocin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要