A sensitive LC-MS/MS method for the quantification of regioisomers of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids in human plasma during endothelial stimulation

Analytical and bioanalytical chemistry(2016)

引用 15|浏览21
暂无评分
摘要
Epoxyeicosatrienoic acids (EETs) are vasodilating lipid mediators metabolized into dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase. We aimed to develop a LC-MS/MS method to quantify EETs and DHETs in human plasma and monitored their levels during vascular endothelial stimulation. Plasma samples, collected from 14 healthy and five hypertensive subjects at baseline and during radial artery endothelium-dependent flow-mediated dilatation, were spiked with internal standards. Lipids were then extracted by a modified Bligh and Dyer method and saponified to release bound EETs and DHETs. Samples were purified by a second liquid–liquid extraction and analyzed by LC-MS/MS. The assay allowed identification of (±)8(9)-epoxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-EET); (±)11(12)-epoxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-EET); (±)14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-EET); (±)8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-DHET); (±)11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-DHET); and (±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-DHET). (±)5(6)-epoxy-5Z,11Z,14Z-eicosatrienoic acid (5,6-EET) was virtually undetectable due to its chemical instability. The limits of quantification were 0.25 ng/mL for DHETs and 0.5 ng/mL for EETs. Intra- and inter-assay variations ranged from 1.6 to 13.2%. Heating induced a similar increase in 8,9-EET, 11,12-EET, and 14,15-EET levels and in corresponding DHET levels in healthy but not in hypertensive subjects. We validated a sensitive LC-MS/MS method for measuring simultaneously plasma EET and DHET regioisomers in human plasma and showed its interest for assessing endothelial function.
更多
查看译文
关键词
Dihydroxyeicosatrienoic acids,Endothelial cells,Epoxyeicosatrienoic acids,LC-MS/MS,Soluble epoxide hydrolase,Vascular biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要