Stochastic Gradient Push for Distributed Deep Learning

INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97(2019)

引用 349|浏览89
暂无评分
摘要
Distributed data-parallel algorithms aim to accelerate the training of deep neural networks by parallelizing the computation of large mini-batch gradient updates across multiple nodes. Approaches that synchronize nodes using exact distributed averaging (e.g., via AllReduce) are sensitive to stragglers and communication delays. The PushSum gossip algorithm is robust to these issues, but only performs approximate distributed averaging. This paper studies Stochastic Gradient Push (SGP), which combines PushSum with stochastic gradient updates. We prove that SGP converges to a stationary point of smooth, non-convex objectives at the same sub-linear rate as SGD, that all nodes achieve consensus, and that SGP achieves a linear speedup with respect to the number of compute nodes. Furthermore, we empirically validate the performance of SGP on image classification (ResNet-50, ImageNet) and machine translation (Transformer, WMT'16 En-De) workloads. Our code will be made publicly available.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要