Graph Saliency Maps through Spectral Convolutional Networks: Application to Sex Classification with Brain Connectivity

Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities: Second International Workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings(2018)

引用 23|浏览17
暂无评分
摘要
Graph convolutional networks (GCNs) allow to apply traditional convolution operations in non-Euclidean domains, where data are commonly modelled as irregular graphs. Medical imaging and, in particular, neuroscience studies often rely on such graph representations, with brain connectivity networks being a characteristic example, while ultimately seeking the locus of phenotypic or disease-related differences in the brain. These regions of interest (ROIs) are, then, considered to be closely associated with function and/or behaviour. Driven by this, we explore GCNs for the task of ROI identification and propose a visual attribution method based on class activation mapping. By undertaking a sex classification task as proof of concept, we show that this method can be used to identify salient nodes (brain regions) without prior node labels. Based on experiments conducted on neuroimaging data of more than 5000 participants from UK Biobank, we demonstrate the robustness of the proposed method in highlighting reproducible regions across individuals. We further evaluate the neurobiological relevance of the identified regions based on evidence from large-scale UK Biobank studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要