An empirical study of PM2.5 forecasting using neural network

2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)(2017)

引用 27|浏览22
暂无评分
摘要
In the recent years, a lot of efforts have been made to regulate air pollutant levels in most of the developed and developing countries. Fine particulate matter (PM2.5) is considered to be one of the major reasons behind deteriorating public health and a lot of efforts are being made to keep a check on PM2.5 levels. Accurately forecasting PM2.5 level is a challenging task and has been highly dependent on model based approaches. In this paper, we explore new possibilities to hourly forecast PM2.5. Choosing the right forecasting model becomes a very important aspect when it comes to improvement in prediction accuracy. We used Neural Network Autoregression (NNAR) method for the prediction task. The paper also provides a comparative analysis of prediction performance for additive version of Holt-Winters method, autoregressive integrated moving average (ARIMA) model and NNAR model. The experimentation and evaluation is done using real world measurement data from Airbox Project, which shows that our proposed method accurately does the prediction with significantly low error.
更多
查看译文
关键词
PM2.5,Forecast,Artificial Neural Network,ARIMA,Holt Winters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要