An experimentally-calibrated damage mechanics model for stone fracture in shock wave lithotripsy

International Journal of Fracture(2018)

引用 5|浏览12
暂无评分
摘要
A damage model suggested by the Tuler–Butcher concept of dynamic accumulation of microscopic defects is obtained from experimental data on microcrack formation in synthetic kidney stones. Experimental data on appearance of microcracks is extracted from micro-computed tomography images of BegoStone simulants obtained after subjecting the stone to successive pulses produced by an electromagnetic shock-wave lithotripter source. Image processing of the data is used to infer statistical distributions of crack length and width in representative transversal cross-sections of a cylindrical stone. A high-resolution finite volume computational model, capable of accurately modeling internal reflections due to local changes in material properties produced by material damage, is used to simulate the accumulation of damage due to successive shocks. Comparison of statistical distributions of microcrack formation in computation and experiment allows calibration of the damage model. The model is subsequently used to compute fracture of a different aspect-ratio cylindrical stone predicting concurrent formation of two main fracture areas as observed experimentally.
更多
查看译文
关键词
Lithotripsy,Statistical fracture closure,Computational fracture,Experimental fracture calibration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要