Learning to Optimize via Wasserstein Deep Inverse Optimal Control.

arXiv: Learning(2018)

引用 23|浏览154
暂无评分
摘要
We study the inverse optimal control problem in social sciences: we aim at learning a useru0027s true cost function from the observed temporal behavior. In contrast to traditional phenomenological works that aim to learn a generative model to fit the behavioral data, we propose a novel variational principle and treat user as a reinforcement learning algorithm, which acts by optimizing his cost function. We first propose a unified KL framework that generalizes existing maximum entropy inverse optimal control methods. We further propose a two-step Wasserstein inverse optimal control framework. In the first step, we compute the optimal measure with a novel mass transport equation. In the second step, we formulate the learning problem as a generative adversarial network. In two real world experiments - recommender systems and social networks, we show that our framework obtains significant performance gains over both existing inverse optimal control methods and point process based generative models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要