Are FPGAs Suitable for Edge Computing?

HotEdge(2018)

引用 26|浏览22
暂无评分
摘要
The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. In this paper, we study the suitability of deploying FPGAs for edge computing from the perspectives of throughput sensitivity to workload size, architectural adaptiveness to algorithm characteristics, and energy efficiency. This goal is accomplished by conducting comparison experiments on an Intel Arria 10 GX1150 FPGA and an Nvidia Tesla K40m GPU. The experiment results imply that the key advantages of adopting FPGAs for edge computing over GPUs are three-fold: 1) FPGAs can provide a consistent throughput invariant to the size of application workload, which is critical to aggregating individual service requests from various IoT sensors; (2) FPGAs offer both spatial and temporal parallelism at a fine granularity and a massive scale, which guarantees a consistently high performance for accelerating both high-concurrency and high-dependency algorithms; and (3) FPGAs feature 3-4 times lower power consumption and up to 30.7 times better energy efficiency, offering better thermal stability and lower energy cost per functionality.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要