Matrix Metalloproteinase-9-Responsive Nanogels for Proximal Surface Conversion and Activated Cellular Uptake.

Biomacromolecules(2018)

引用 31|浏览5
暂无评分
摘要
Here, we have exploited the heightened extracellular concentration of matrix metalloproteinase-9 (MMP-9) to induce surface-conversional properties of nanogels with the aim of tumor-specific enhanced cellular uptake. A modular polymeric nanogel platform was designed and synthesized for facile formulation and validation of MMP-9-mediated dePEGylation and generation of polyamine-type surface characteristics through peptide N-termini. Nanogels containing MMP-9-cleavable motifs and different poly(ethylene glycol) corona lengths (350 and 750 g/mol) were prepared, and enzymatic surface conversional properties were validated by MALDI characterization of cleaved byproducts, fluorescamine assay amine quantification, and zeta potential. The nanogel with a shorter PEG length, mPEG350-NG, exhibited superior surface conversion in response to extracellular concentrations of MMP-9 compared to that of the longer PEG length, mPEG750-NG. Confocal microscopy images of HeLa cells incubated with both fluorescein-labeled nanogels and DiI-encapsulated nanogels demonstrated greater uptake following MMP-9 "activation" for mPEG350-NG compared to its nontreated "passive" mPEG350-NG parent, demonstrating the versatility of such systems to achieve stimuli-responsive uptake in response to cancer-relevant proteases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要