Executable Operational Semantics of Solidity

arXiv: Programming Languages(2018)

引用 23|浏览88
暂无评分
摘要
Bitcoin has attracted everyone's attention and interest recently. Ethereum (ETH), a second generation cryptocurrency, extends Bitcoin's design by offering a Turing-complete programming language called Solidity to develop smart contracts. Smart contracts allow creditable execution of contracts on EVM (Ethereum Virtual Machine) without third parties. Developing correct smart contracts is challenging due to its decentralized computation nature. Buggy smart contracts may lead to huge financial loss. Furthermore, smart contracts are very hard, if not impossible, to patch once they are deployed. Thus, there is a recent surge of interest on analyzing/verifying smart contracts. While existing work focuses on EVM opcode, we argue that it is equally important to understand and define the semantics of Solidity since programmers program and reason about smart contracts at the level of source code. In this work, we develop the structural operational semantics for Solidity, which allows us to identify multiple design issues which underlines many problematic smart contracts. Furthermore, our semantics is executable in the K framework, which allows us to verify/falsify contracts automatically.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要