Unsupervised Depth Estimation, 3d Face Rotation And Replacement

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018)(2018)

引用 33|浏览140
暂无评分
摘要
We present an unsupervised approach for learning to estimate three dimensional (3D) facial structure from a single image while also predicting 3D viewpoint transformations that match a desired pose and facial geometry. We achieve this by inferring the depth of facial keypoints of an input image in an unsupervised manner, without using any form of ground-truth depth information. We show how it is possible to use these depths as intermediate computations within a new backpropable loss to predict the parameters of a 3D affine transformation matrix that maps inferred 3D keypoints of an input face to the corresponding 2D keypoints on a desired target facial geometry or pose. Our resulting approach, called DepthNets, can therefore be used to infer plausible 3D transformations from one face pose to another, allowing faces to be frontalized, transformed into 3D models or even warped to another pose and facial geometry. Lastly, we identify certain shortcomings with our formulation, and explore adversarial image translation techniques as a post-processing step to re-synthesize complete head shots for faces re-targeted to different poses or identities. (1)
更多
查看译文
关键词
facial geometry,affine transformation matrix,three dimensional,3d models,unsupervised approach
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要