Gradient Diversity: a Key Ingredient for Scalable Distributed Learning

INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84(2018)

引用 135|浏览167
暂无评分
摘要
It has been experimentally observed that distributed implementations of mini-batch stochastic gradient descent (SGD) algorithms exhibit speedup saturation and decaying generalization ability beyond a particular batch-size. In this work, we present an analysis hinting that high similarity between concurrently processed gradients may be a cause of this performance degradation. We introduce the notion of gradient diversity that measures the dissimilarity between concurrent gradient updates, and show its key role in the performance of mini-batch SGD. We prove that on problems with high gradient diversity, mini-batch SGD is amenable to better speedups, while maintaining the generalization performance of serial (one sample) SGD. We further establish lower bounds on convergence where mini-batch SGD slows down beyond a particular batch-size, solely due to the lack of gradient diversity. We provide experimental evidence indicating the key role of gradient diversity in distributed learning, and discuss how heuristics like dropout, Langevin dynamics, and quantization can improve it.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要