Theoretically optimal and empirically efficient r-trees with strong parallelizability

Hosted Content(2018)

引用 39|浏览67
暂无评分
摘要
AbstractThe massive amount of data and large variety of data distributions in the big data era call for access methods that are efficient in both query processing and index bulk-loading, and over both practical and worst-case workloads. To address this need, we revisit a classic multidimensional access method - the R-tree. We propose a novel R-tree packing strategy that produces R-trees with an asymptotically optimal I/O complexity for window queries in the worst case. Our experiments show that the R-trees produced by the proposed strategy are highly efficient on real and synthetic data of different distributions. The proposed strategy is also simple to parallelize, since it relies only on sorting. We propose a parallel algorithm for R-tree bulk-loading based on the proposed packing strategy, and analyze its performance under the massively parallel communication model. Experimental results confirm the efficiency and scalability of the parallel algorithm over large data sets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要