A Transactional Correctness Tool for Abstract Data Types.

TACO(2017)

引用 20|浏览33
暂无评分
摘要
Transactional memory simplifies multiprocessor programming by providing the guarantee that a sequential block of code in the form of a transaction will exhibit atomicity and isolation. Transactional data structures offer the same guarantee to concurrent data structures by enabling the atomic execution of a composition of operations. The concurrency control of transactional memory systems preserves atomicity and isolation by detecting read/write conflicts among multiple concurrent transactions. State-of-the-art transactional data structures improve on this concurrency control protocol by providing explicit transaction-level synchronization for only non-commutative operations. Since read/write conflicts are handled by thread-level concurrency control, the correctness of transactional data structures cannot be evaluated according to the read/write histories. This presents a challenge for existing correctness verification techniques for transactional memory, because correctness is determined according to the transitions taken by the transactions in the presence of read/write conflicts. In this article, we present Transactional Correctness tool for Abstract Data Types (TxC-ADT), the first tool that can check the correctness of transactional data structures. TxC-ADT elevates the standard definitions of transactional correctness to be in terms of an abstract data type, an essential aspect for checking correctness of transactions that synchronize only for high-level semantic conflicts. To accommodate a diverse assortment of transactional correctness conditions, we present a technique for defining correctness as a happens-before relation. Defining a correctness condition in this manner enables an automated approach in which correctness is evaluated by generating and analyzing a transactional happens-before graph during model checking. A transactional happens-before graph is maintained on a per-thread basis, making our approach applicable to transactional correctness conditions that do not enforce a total order on a transactional execution. We demonstrate the practical applications of TxC-ADT by checking Lock Free Transactional Transformation and Transactional Data Structure Libraries for serializability, strict serializability, opacity, and causal consistency.
更多
查看译文
关键词
Concurrency, correctness verification, transactional data structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要