A unified particle system framework for multi-phase, multi-material visual simulations.

ACM Trans. Graph.(2017)

引用 37|浏览245
暂无评分
摘要
We introduce a unified particle framework which integrates the phase-field method with multi-material simulation to allow modeling of both liquids and solids, as well as phase transitions between them. A simple elasto-plastic model is used to capture the behavior of various kinds of solids, including deformable bodies, granular materials, and cohesive soils. States of matter or phases, particularly liquids and solids, are modeled using the non-conservative Allen-Cahn equation. In contrast, materials---made of different substances---are advected by the conservative Cahn-Hilliard equation. The distributions of phases and materials are represented by a phase variable and a concentration variable, respectively, allowing us to represent commonly observed fluid-solid interactions. Our multi-phase, multi-material system is governed by a unified Helmholtz free energy density. This framework provides the first method in computer graphics capable of modeling a continuous interface between phases. It is versatile and can be readily used in many scenarios that are challenging to simulate. Examples are provided to demonstrate the capabilities and effectiveness of this approach.
更多
查看译文
关键词
elastoplastic, multi-material simulation, phase transition, phase-field, smoothed particle hydrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要