A polynomial particle-in-cell method.

ACM Trans. Graph.(2017)

引用 116|浏览76
暂无评分
摘要
Recently the Affine Particle-In-Cell (APIC) Method was proposed by Jiang et al.[2015; 2017b] to improve the accuracy of the transfers in Particle-In-Cell (PIC) [Harlow 1964] techniques by augmenting each particle with a locally affine, rather than locally constant description of the velocity. This reduced the dissipation of the original PIC without suffering from the noise present in the historic alternative, Fluid-Implicit-Particle (FLIP) [Brackbill and Ruppel 1986]. We present a generalization of APIC by augmenting each particle with a more general local function. By viewing the grid-to-particle transfer as a linear and angular momentum conserving projection of the particle-wise local grid velocities onto a reduced basis, we greatly improve the energy and vorticity conservation over the original APIC. Furthermore, we show that the cost of the generalized projection is negligible over APIC when using a particular class of local polynomial functions. Lastly, we note that our method retains the filtering property of APIC and PIC and thus has similar robustness to noise.
更多
查看译文
关键词
APIC, FLIP, PIC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要