Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network.

Future Generation Computer Systems(2018)

引用 236|浏览67
暂无评分
摘要
Ventricular tachycardia (VT) and ventricular fibrillation (VFib) are the life-threatening shockable arrhythmias which require immediate attention. Cardiopulmonary resuscitation (CPR) and defibrillation are highly recommended means of immediate treatment of these shockable arrhythmias and to resume spontaneous circulation. However, to increase efficacy of defibrillation by an automated external defibrillator (AED), an accurate distinction of shockable ventricular arrhythmias from non-shockable ones needs to be provided upfront. Therefore, in this work, we have proposed a novel tool for an automated differentiation of shockable and non-shockable ventricular arrhythmias from 2 s electrocardiogram (ECG) segments. Segmented ECGs are processed by an eleven-layer convolutional neural network (CNN) model. Our proposed system was 10-fold cross validated and achieved maximum accuracy, sensitivity and specificity of 93.18%, 95.32% and 91.04% respectively. Its high performance indicates that shockable life-threatening arrhythmia can be immediately detected and thus increase the chance of survival while CPR or AED-based support is performed. Our tool can also be seamlessly integrated with an ECG acquisition systems in the intensive care units (ICUs).
更多
查看译文
关键词
Automated external defibrillator (AED),ECG signals,Non-shockable,Shockable,Ventricular arrhythmias
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要