Clove: Congestion-Aware Load Balancing at the Virtual Edge.

CoNEXT(2017)

引用 89|浏览142
暂无评分
摘要
Most datacenters still use Equal Cost Multi-Path (ECMP), which performs congestion-oblivious hashing of flows over multiple paths, leading to an uneven distribution of traffic. Alternatives to ECMP come with deployment challenges, as they require either changing the tenant VM network stacks (e.g., MPTCP) or replacing all of the switches (e.g., CONGA). We argue that the hypervisor provides a unique point for implementing load-balancing algorithms that are easy to deploy, while still reacting quickly to congestion. We propose Clove, a scalable load-balancer that (i) runs entirely in the hypervisor, requiring no modifications to tenant VM networking stacks or physical switches, and (ii) works on any topology and adapts quickly to topology changes and traffic shifts. Clove relies on standard ECMP in physical switches, discovers paths using a novel traceroute mechanism, uses software-based flowlet-switching, and continuously learns congestion (or path utilization) state using standard switch features. It then manipulates packet-header fields in the hypervisor switch to direct traffic over less congested paths. Clove achieves 1.5 to 7 times smaller flow-completion times at 70% network load than other load-balancing algorithms that work with existing hardware. Clove also captures some 80% of the performance gain of best-of-breed hardware-based load-balancing algorithms like CONGA that require new equipment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要