Joint Representation Learning for Top-N Recommendation with Heterogeneous Information Sources.

CIKM(2017)

引用 190|浏览119
暂无评分
摘要
The Web has accumulated a rich source of information, such as text, image, rating, etc, which represent different aspects of user preferences. However, the heterogeneous nature of this information makes it difficult for recommender systems to leverage in a unified framework to boost the performance. Recently, the rapid development of representation learning techniques provides an approach to this problem. By translating the various information sources into a unified representation space, it becomes possible to integrate heterogeneous information for informed recommendation. In this work, we propose a Joint Representation Learning (JRL) framework for top-N recommendation. In this framework, each type of information source (review text, product image, numerical rating, etc) is adopted to learn the corresponding user and item representations based on available (deep) representation learning architectures. Representations from different sources are integrated with an extra layer to obtain the joint representations for users and items. In the end, both the per-source and the joint representations are trained as a whole using pair-wise learning to rank for top-N recommendation. We analyze how information propagates among different information sources in a gradient-descent learning paradigm, based on which we further propose an extendable version of the JRL framework (eJRL), which is rigorously extendable to new information sources to avoid model re-training in practice. By representing users and items into embeddings offline, and using a simple vector multiplication for ranking score calculation online, our framework also has the advantage of fast online prediction compared with other deep learning approaches to recommendation that learn a complex prediction network for online calculation.
更多
查看译文
关键词
Recommender Systems, Representation Learning, Heterogeneous Information Processing, Top-N Recommendation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要