Finding by Counting: A Probabilistic Packet Count Model for Indoor Localization in BLE Environments.

MobiCom '17: The 23rd Annual International Conference on Mobile Computing and Networking Snowbird Utah USA October, 2017(2017)

引用 5|浏览34
暂无评分
摘要
We propose a probabilistic packet reception model for Bluetooth Low Energy (BLE) packets in indoor spaces and we validate the model by using it for indoor localization. We expect indoor localization to play an important role in indoor public spaces in the future. We model the probability of reception of a packet as a generalized quadratic function of distance, beacon power and advertising frequency. Then, we use a Bayesian formulation to determine the coefficients of the packet loss model using empirical observations from our testbed. We develop a new sequential Monte-Carlo algorithm that uses our packet count model. The algorithm is general enough to accommodate different spatial configurations. We have good indoor localization experiments: our approach has an average error of ~ 1.2m, 53% lower than the baseline range-free Monte-Carlo localization algorithm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要