Elementary Symmetric Polynomials For Optimal Experimental Design

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017)(2017)

引用 21|浏览4
暂无评分
摘要
We revisit the classical problem of optimal experimental design (OED) under a new mathematical model grounded in a geometric motivation. Specifically, we introduce models based on elementary symmetric polynomials; these polynomials capture "partial volumes" and offer a graded interpolation between the widely used A-optimal design and D-optimal design models, obtaining each of them as special cases. We analyze properties of our models, and derive both greedy and convex-relaxation algorithms for computing the associated designs. Our analysis establishes approximation guarantees on these algorithms, while our empirical results substantiate our claims and demonstrate a curious phenomenon concerning our greedy method. Finally, as a byproduct, we obtain new results on the theory of elementary symmetric polynomials that may be of independent interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要