Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations.

arXiv: Learning(2017)

引用 333|浏览122
暂无评分
摘要
How can we learn a classifier that is fair for a protected or sensitive group, when we do not know if the input to the classifier belongs to the protected group? How can we train such a classifier when data on the protected group is difficult to attain? In many settings, finding out the sensitive input attribute can be prohibitively expensive even during model training, and sometimes impossible during model serving. For example, in recommender systems, if we want to predict if a user will click on a given recommendation, we often do not know many attributes of the user, e.g., race or age, and many attributes of the content are hard to determine, e.g., the language or topic. Thus, it is not feasible to use a different classifier calibrated based on knowledge of the sensitive attribute. Here, we use an adversarial training procedure to remove information about the sensitive attribute from the latent representation learned by a neural network. In particular, we study how the choice of data for the adversarial training effects the resulting fairness properties. We find two interesting results: a small amount of data is needed to train these adversarial models, and the data distribution empirically drives the adversaryu0027s notion of fairness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要