RotorNet: A Scalable, Low-complexity, Optical Datacenter Network

SIGCOMM(2017)

引用 229|浏览294
暂无评分
摘要
The ever-increasing bandwidth requirements of modern datacenters have led researchers to propose networks based upon optical circuit switches, but these proposals face significant deployment challenges. In particular, previous proposals dynamically configure circuit switches in response to changes in workload, requiring network-wide demand estimation, centralized circuit assignment, and tight time synchronization between various network elements--- resulting in a complex and unwieldy control plane. Moreover, limitations in the technologies underlying the individual circuit switches restrict both the rate at which they can be reconfigured and the scale of the network that can be constructed. We propose RotorNet, a circuit-based network design that addresses these two challenges. While RotorNet dynamically reconfigures its constituent circuit switches, it decouples switch configuration from traffic patterns, obviating the need for demand collection and admitting a fully decentralized control plane. At the physical layer, RotorNet relaxes the requirements on the underlying circuit switches---in particular by not requiring individual switches to implement a full crossbar---enabling them to scale to 1000s of ports. We show that RotorNet outperforms comparably priced Fat Tree topologies under a variety of workload conditions, including traces taken from two commercial datacenters. We also demonstrate a small-scale RotorNet operating in practice on an eight-node testbed.
更多
查看译文
关键词
Datacenter,optical switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要