WeChat Mini Program
Old Version Features

ABCpy: A User-Friendly, Extensible, and Parallel Library for Approximate Bayesian Computation

PASC(2017)

InterDisciplinary Institute of Data Science

Cited 34|Views6
Abstract
ABCpy is a highly modular, scientific library for Approximate Bayesian Computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their research without being ABC experts; using ABCpy they can easily run large parallel simulations without much knowledge about parallelization, even without much additional effort to parallelize their code. Further, ABCpy enables ABC experts to easily develop new inference schemes and evaluate them in a standardized environment, and to extend the library with new algorithms. These benefits come mainly from the modularity of ABCpy. We give an overview of the design of ABCpy, and we provide a performance evaluation concentrating on parallelization.
More
Translated text
Key words
ABC, Spark, Parallel, Library
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined