On Axis-Parallel Tests for Tensor Product Codes

THEORY OF COMPUTING(2020)

引用 7|浏览55
暂无评分
摘要
Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Navon 2017) tests. In this paper we study tests that only consider restrictions along axis-parallel hyperplanes, which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006). While such tests are necessarily "weaker," they work for a more general class of codes, namely tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan 2008; Meir 2010). We present two results on axis-parallel tests. (1) Bivariate low-degree testing with low agreement. We prove an analogue of the Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit for much larger fields. Namely, for the tensor product of the Reed-Solomon code with itself, we prove that for sufficiently large fields, the 2-query variant of the axisparallel line test (row-vs-column test) works for arbitrarily small agreement. Prior analyses of axis-parallel tests assumed high agreement, and no results for such tests in the low-agreement regime were known. Our proof technique deviates significantly from that of Polishchuk and Spielman, which relies on algebraic methods such as Bezout's Theorem, and instead leverages a fundamental result in extremal graph theory by Kovari, Sos, and Turan. To our knowledge, this is the first time this result is used in the context of low-degree testing. (2) Improved robustness for tensor product codes. Robustness is a strengthening of local testability that underlies many applications. We prove that the axis-parallel hyperplane test for the m-th tensor power of a linear code with block length n and distance d is Omega(d(m)/n(m))-robust. This improves on a theorem of Viderman (2012) by a factor of 1/poly(m). While the improvement is not large, we believe that our proof is a notable simplification compared to prior work.
更多
查看译文
关键词
error-correcting codes,tensor product codes,locally testable codes,low-degree testing,extremal graph theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要