Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games

STOC '17: Symposium on Theory of Computing Montreal Canada June, 2017(2017)

引用 44|浏览21
暂无评分
摘要
We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex $v$, outputs the children of $v$. We construct a quantum algorithm which, given such access to a search tree of depth at most $n$, estimates the size of the tree $T$ within a factor of $1\pm \delta$ in $\tilde{O}(\sqrt{nT})$ steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines $T$ nodes of a search tree into an $\tilde{O}(\sqrt{T}n^{3/2})$ time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b) We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games). We show that, in this setting, formulas of size $T$ and depth $T^{o(1)}$ can be evaluated in quantum time $O(T^{1/2+o(1)})$. Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.
更多
查看译文
关键词
Quantum algorithms,quantum search,backtracking,search trees,Boolean formula evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要